Bond-propagation algorithm for thermodynamic functions in general two-dimensional Ising models

نویسندگان

  • Y. L. Loh
  • E. W. Carlson
  • M. Y. J. Tan
چکیده

Recently, we developed and implemented the bond-propagation algorithm for calculating the partition function and correlation functions of random-bond Ising models in two dimensions Y. L. Loh and E. W. Carlson, Phys. Rev. Lett. 97, 227205 2006 . The algorithm is the fastest available for calculating these quantities near the percolation threshold. In this paper, we show how to extend the bond-propagation algorithm to directly calculate thermodynamic functions by applying the algorithm to derivatives of the partition function and we derive explicit expressions for this transformation. We also discuss variations of the original bond-propagation procedure within the larger context of Y Y reducibility and discuss the relation of this class of algorithm to other algorithms developed for Ising systems. We conclude with a discussion on the outlook for applying similar algorithms to other models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic formalism and large deviations for multiplication-invariant potentials on lattice spin systems

We introduce the multiplicative Ising model and prove basic properties of its thermodynamic formalism such as existence of pressure and entropies. We generalize to one-dimensional “layer-unique” Gibbs measures for which the same results can be obtained. For more general models associated to a d-dimensional multiplicative invariant potential, we prove a large deviation theorem in the uniqueness ...

متن کامل

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

Efficient algorithm for random-bond ising models in 2D.

We present an efficient algorithm for calculating the properties of Ising models in two dimensions, directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm computes the partition function and correlation functions at a single temperature on any planar network of N Ising spins in O(N;{3/2}) time or less. The method can handle continuous or discrete bond...

متن کامل

Novel Monte Carlo algorithms and their applications

We describe a generalized scheme for the probability-changing cluster (PCC) algorithm, based on the study of the finite-size scaling property of the correlation ratio, the ratio of the correlation functions with different distances. We apply this generalized PCC algorithm to the two-dimensional 6-state clock model. We also discuss the combination of the cluster algorithm and the extended ensemb...

متن کامل

Three Dimensional Numerical Simulation of Tsunami Generation and Propagation Due to Makran Subduction and run-up on Chabahar Bay and Makran Coasts

Makran subduction located at the northwest of the Indian Ocean nearby the southern coast of Iran and Pakistan. Makran subduction is the source of tsunamis that threaten southern coast of Iran. In this article, generation and propagation of 1945’s tsunami initiated by Makran subduction is simulated. For the three dimensional generation of the wave, advanced algorithm of Okada is adopted. The CFD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007